Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399828

RESUMO

The modification of polymer materials' useful properties can be applicable in many industrial areas due to the ability to make commodity and technical plastics (plastics that offer many benefits, such as processability, by injection molding) useful in more demanding applications. In the case of injection-molded parts, one of the most suitable methods for modification appears to be high-energy irradiation, which is currently used primarily for the modification of mechanical and thermal properties. However, well-chosen doses can effectively modify the properties of the surface layer as well. The purpose of this study is to provide a complex description of high-energy radiation's (ß radiation) influence on the useful properties of injection-molded parts made from common polymers. The results indicate that ß radiation initiates the cross-linking process in material and leads to improved mechanical properties. Besides the cross-linking process, the material also experiences oxidation, which influences the properties of the surface layer. Based on the measured results, the main outputs of this study are appropriately designed regression models that determine the optimal dose of radiation.

2.
Materials (Basel) ; 16(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36984271

RESUMO

Nowadays, technical practice puts emphasis on improving selected material properties of polymers which could lead to new applications. Material properties can be modified in numerous ways, among which is radiation treatment. This study looks into the influence of beta radiation on several properties of polyamide 6, e.g., indentation hardness, modulus and creep. Main changeable parameters were the concentration of triallyl isocyanurate (TAIC), which promotes cross-linking, and intensity of radiation. The concentration was in the range from 2 to 6 wt.%, while the radiation dose was 0, 66, 99 and 132 kGy. The treated materials were measured for indentation hardness, modulus and creep. Degree of cross-linking was verified by thermo-mechanical analysis (TMA), while degradation processes was investigated by Fourier-transform infrared spectroscopy (FTIR). The results indicate that electron radiation positively affects the tested material properties. The best results were seen in polyamide with 6 wt.% of TAIC, which demonstrated a 38% improvement in mechanical properties after exposure to 132 kGy. This improvement in properties affects the final parts and their application (e.g., in the automotive industry-engine parts; in electrical engineering-insulation of wires and cables; and in industry-pipes for underfloor heating, etc.).

3.
Materials (Basel) ; 16(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614723

RESUMO

This research paper is concerned with the experimental study of high-feed end milling of 1.4541 (X6CrNiTi18-10) stainless steel with replaceable cermet plates. Several machining operations were performed under different cutting conditions. The variable values were depth of cut, feed per tooth and cutting speed. The results were analyzed, and cutting forces were evaluated for dependence on cutting conditions (cutting speed, depth of cut, feed per tooth). The obtained data were statistically processed and plotted in graphs. It was found that the percentage distribution of cutting forces changed as the tool load increased. The ratio of forces acting in individual axes also changed with varying trends. An increasing trend was recorded in the x and y axes, while a decreasing trend was recorded in the z axis. Measured change, approximately 10%, can no longer be neglected as it can significantly influence the clamping stability of a part.

4.
Materials (Basel) ; 14(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771933

RESUMO

This study focuses on the problematic of polyamide 6 containing various concentrations of cross-linking agent that was exposed to electron radiation. It is important to improve the material properties of polymers as much as possible. This endeavor can be realized by numerous methods, one of which is radiation exposure. This study investigates the effect of electron beam radiation in doses ranging from 66 to 132 kGy on the micro-mechanical properties of polymers, specifically polyamide 6 filled with 1, 3 and 5 wt.% of cross-linking agent triallyl isocyanurate (TAIC). The changes in the material brought by the radiation exposure were quantified by measurements of indentation hardness and modulus, which were the main measured micro-mechanical properties. Furthermore, thermo-mechanical analysis (TMA) was chosen to confirm the results of the material cross-linking, while the effect of degradation was investigated by Fourier-transform infrared spectroscopy (FTIR). In pursuit of complete evaluation, the topography of the test subject's surface was explored by atomic force microscopy (AFM). The optimal concentration/radiation ratio was found in polyamide 6 enriched by 5 wt.% concentration of TAIC, which was irradiated by 132 kGy. Material treated in such a way had its indentation hardness by 33% and indentation modulus improved by 26% in comparison with the untreated material. These results were subsequently confirmed by the TMA and FTIR methods.

5.
Materials (Basel) ; 14(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683500

RESUMO

This study describes the influence of polymer flow length on mechanical properties of tested polymer, specifically polycarbonate. The flow length was examined in a spiral shaped mould. The mould cavity's surface was machined by several methods, which led to differing roughness of the surface. The cavity was finished by milling, grinding and polishing. In order to thoroughly understand the influence of the mould surface quality on the flow length, varying processing parameters, specifically the pressure, were used. The polymer part was divided into several segments, in which the micro-mechanical properties, such as hardness and indentation modulus were measured. The results of this study provide interesting data concerning the flow length, which was up to 3% longer for rougher surfaces, but shorter in cavities with polished surface. These results are in disagreement with the commonly practiced theory, which states that better surface quality leads to greater flow length. Furthermore, evaluation of the micro-mechanical properties measured along the flow path demonstrated significant variance in researched properties, which increased by 35% (indentation hardness) and 86% by indentation modulus) in latter segments of the spiral in comparison with the gate.

6.
Materials (Basel) ; 13(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610497

RESUMO

This study describes the effect of electron radiation on the nano-mechanical properties of surface layers of selected polyamide (PA) types. Electron radiation initiates the cross-linking of macromolecules in the polyamide structure, leading to the creation of a 3D network which fundamentally changes the properties of the tested polymers. Selected types of polyamide (PA 6, PA 66 and PA 9T) were exposed to various intensities of electron radiation (33 kGy, 66 kGy, 99 kGy, 132 kGy, 165 kGy and 198 kGy). The cross-linked polyamides' surface properties were measured by means of the modern nano-indentation technique (Depth Sensing Indentation; DSI), which operates on the principle of the immediate detection of indenter penetration depth in dependence on the applied load. The evaluation was preformed using the Oliver-Pharr method. The effect of electron radiation on the tested polyamides manifested itself in the creation of a 3D network, which led to an increase of surface layer properties, such as indentation hardness, elastic modulus, creep and temperature resistance, by up to 93%. The increase of temperature and mechanical properties substantially broadens the field of application of these materials in technical practice, especially when higher temperature resistance is required. The positive changes to the nano-mechanical properties as well as mechanical and temperature capabilities instigated by the cross-linking process were confirmed by the gel volume test. These measurements lay the foundation for a detailed study of this topic, as well as for a more effective means of modifying chosen properties of technical polyamide products by radiation.

7.
Materials (Basel) ; 13(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093045

RESUMO

This study's goal was to describe the influence of a wide range of ionizing beta radiation upon the changes in surface layer mechanical properties and structural modifications of selected types of polymer. Radiation crosslinking is a process whereby the impingement of high-energy electrons adjusts test sample structures, thus enhancing the useful properties of the material, e.g., hardness, wear-resistance, and creep, in order that they may function properly during their technical use. The selected polymers tested were polyolefin polymers like polyethylene (Low-density polyethylene LDPE, High-density polyethylene HDPE). These samples underwent exposure to electron radiation of differing dosages (33, 66, 99, 132, 165, and 198 kGy). After the crosslinking process, the samples underwent testing of the nano-mechanical properties of their surface layers. This was done by means of a state-of-the-art indentation technique, i.e., depth-sensing indentation (DSI), which detects the immediate change in the indentation depth associated with the applied force. Indeed, the results indicated that the optimal radiation dosage increased the mechanical properties by up to 57%; however, the beneficial levels of radiation varied with each material. Furthermore, these modifications faced examination from the structural perspective. For this purpose, a gel test, Raman spectroscopy, and crystalline portion determination by X-ray all confirmed the assumed trends.

8.
Polymers (Basel) ; 11(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726648

RESUMO

Bonding is increasingly being used, and it is an ever-evolving method for creating unbreakable bonds. The strength of adhesive bonds determines, to a significant extent, the possible applications of this technology and is influenced by many factors. In addition to the type of adhesive used, the characteristics of the surface layers play a significant role; therefore, significant attention is paid to their adjustment and modification. Radiation crosslinking is one of the most important methods for modifying polymer properties. Currently, the most frequently used type of radiation for polymer crosslinking is beta minus (ß-) radiation, which affects not only mechanical but also surface properties, chemical and temperature resistance, and surface layer characteristics of polymers. This study investigated the effect of ß- radiation on the surface layer properties of low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP) and the effects of surface-layer modification on the ultimate tensile strength of bonded joints. Based on the results, we concluded that ß- radiation significantly changes the properties of the tested surface layers, increases the surface energy, and improves the adhesiveness of bonds. Consequently, the final strength of the LDPE, HDPE, and PP bonds increases significantly.

9.
Polymers (Basel) ; 10(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30966122

RESUMO

Some polymers need a cross-linking agent for the controlled cross-linking process of polymers with a tendency to degradation during the radiation cross-linking process. While, on the other hand, other polymers do not need a cross-linking agent-predominantly there are cross-linking polymers. The Thermo-Plastic Elastomer (TPE) that was used belongs to this group of predominantly cross-linking polymers; however, this agent is added because of faster reaction times and smaller irradiation doses. Microindentation⁻tensile and tensile impact tests were carried out on a thermoplastic sample-with, and without, a cross-linking agent. Small changes were measured between these materials at low radiation doses, (up to 66 kGy); nevertheless, at higher doses, the influence of the cross-linking agent on the mechanical properties is significant.

10.
Polymers (Basel) ; 10(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30966194

RESUMO

This article deals with the influence of electron-beam radiation on the micro-mechanical, thermo-mechanical, and structural properties of selected polymers. In the search for the desired improvement of polymers, it is possible to use, inter alia, one particular possible modification-Namely, crosslinking-Which is a process during which macromolecular chains start to connect to each other and, thus, create the spatial network in the structure. In the course of the treatment of the ionizing radiation, two actions can occur: crosslinking and scission of macromolecules, or degradation. Both these processes run in parallel. Using the crosslinking technology, standard and technical polymers can acquire the more "expensive" high-tech polymeric material properties and, thus, replace these materials in many applications. The polymers that were tested were selected from across the whole spectra of thermoplastics, ranging from commodity polymers, technical polymers, as well as high-performance polymers. These polymers were irradiated by different doses of beta radiation (33, 66, 99, 132, 165, and 198 kGy). The micro-mechanical and thermo-mechanical properties of these polymers were measured. When considering the results, it is obvious that irradiation acts on each polymer differently but, always when the optimal dose was found, the mechanical properties increased by up to 36%. The changes of micro-mechanical and thermo-mechanical properties were confirmed by structural measurement when the change of the micro-hardness and modulus corresponded to the crystalline phase change as determined by X-ray and gel content.

11.
Polymers (Basel) ; 10(10)2018 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30960982

RESUMO

The main advantages of Thermoplastic Polyester Elastomers (TPE-E) are their elastomer properties as well as their ability to be processed in the same way as thermoplastic polymers (e.g., injection moulding, compression moulding and extrusion). However, TPE-Es' properties, mainly their mechanical properties and thermal characteristics, are not as good as those of elastomers. Because of this TPE-Es are often modified with the aim of improving their properties and extending their range of application. Radiation cross-linking using accelerated electron beams is one of the most effective ways to change virgin polymers' properties significantly. Their electrical (that is to say permittivity and resistivity measurements), mechanical (that is, tensile and impact tensile tests), as well as surface (that is, nano-indentation) properties were measured on modified/cross-linked TPE-E specimens with and/or without a cross-linking agent at irradiation doses of 0, 33, 66, 99, 132, 165 and 198 kGy. The data acquired from these procedures show significant changes in the measured properties. The results of this study allow the possibility of determining the proper processing parameters and irradiation doses for the production of TPE-E products which leads to the enlargement of their application in practice.

12.
Polymers (Basel) ; 10(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966675

RESUMO

This article deals with the study of the utilisation of irradiated HDPE products after their end-of-life cycle. Today, polymer waste processing is a matter of evermore intensive discussion. Common thermoplastic waste recycling-especially in the case of wastes with a defined composition-is generally well-known-and frequently used. On the contrary, processing cross-linked plastics is impossible to do in the same way as with virgin thermoplastics-mainly due to the impossibility of remelting them. The possibility of using waste in the form of grit or a powder, made from cross-linked High Density PolyEthylene (rHDPEx) products, after their end-of-life cycle, as a filler for virgin Low Density PolyEthylene (LDPE) was tested in a matrix. It was found that both the mechanical behaviour and processability of new composites with an LDPE matrix, with rHDPEx as a filler, depend-to a high degree-on the amount of the filler. The composite can be processed up to 60% of the filler content. The Polymer Mixture Fluidity dropped significantly, in line with the amount of filler, while the mechanical properties, on the other hand, predominantly grew with the increasing amount of rHDPEx.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA